4D NC Gravity from 5D NC CS Theory

Dušan Đorđević

In collaboration with Dragoljub Gočanin

Faculty of Physic, University of Belgrade

BW2021

September 9, 2021

- 1. Chern-Simons (CS) Lagrangian
- 2. NC Field Theory
- 3. Dimensional (KK) Reduction
- 4. Results

Introduction

Figure: Image source: Wikipedia

- Lie Group G
- Invariant symmetric form (usually (symmetrised) Trace) on its Lie algebra $\langle X_1, ..., X_i, ..., X_j, ..., X_n \rangle_n = \langle X_1, ..., X_j, ..., X_i, ..., X_n \rangle_n$ $\langle X_1, ..., X_n \rangle_n = \langle UX_1U^{-1}, ..., UX_nU^{-1} \rangle_n, \quad U \in G$
- Connection A on a principal bundle (aka Gauge potential)

In our work, we assume that the bundle is trivial $(\Rightarrow A = A^A_\mu T_A dx^\mu)$.

Curvature $F = dA + A \wedge A$

Theorem (Chern-Weil):
•
$$d\langle F, ..., F \rangle_n = 0$$

• $\langle \tilde{F}, ..., \tilde{F} \rangle_n - \langle F, ..., F \rangle_n = dQ(\tilde{A}, A)$

We can use Q(A), properly normalised, as our Lagrangian density.

AdS CS Theory

• We will use the Trace in a certain representation of SO(4,2) algebra. We use generators for SO(4,2) algebra (signautre (-,+,+,+,+,-)) as:

$$J_{AB} = rac{1}{4} [\Gamma_A, \Gamma_B], \quad A = 0, 1, 2, 3, 4;$$

 $J_{A5} = rac{1}{2} \Gamma_A,$

where Γ_A are five-dimensional gamma matrices satisfying Clifford algebra $\{\Gamma_A, \Gamma_B\} = 2G_{AB}$. In terms of four-dimensional gamma matrices they can be written as:

$$\Gamma_a = -i\gamma_a, \quad a = 0, 1, 2, 3;$$

 $\Gamma_4 = \gamma_5.$

Note that γ matrices written here are those for a different metric signature (+, -, -, -) (and thus the imaginary unit in front).

AdS CS Theory

- Take $A = \frac{1}{2}\omega^{AB}J_{AB} + \frac{1}{7}e^{A}J_{A5}$, where ω^{AB} is interpreted as spin connection and e^{A} as vierbein
- We have to set normalisation:

$$\frac{-i}{3}\kappa Tr(F \wedge F \wedge F) = dL_{CS}^{(5)}$$

Compute: $L_{CS}^5 = \frac{\kappa}{8}\varepsilon_{ABCDE} \left(\frac{1}{5l^5}e^Ae^Be^Ce^De^E + \frac{2}{3l^3}R^{AB}e^Ce^De^E + \frac{1}{l}R^{AB}R^{CD}e^E\right).$
More falimilar form:

$$\frac{\kappa}{2l^3}\int \mathrm{d}^5 x\,\sqrt{-g}\Big(R+\frac{6}{l^2}+\frac{l^2}{4}(R^2-4R^{\mu\nu}R_{\mu\nu}+R^{\mu\nu\rho\sigma}R_{\mu\nu\rho\sigma})\Big)$$

NC Field Theory

- Standard picture: $[x^{\mu}, x^{\nu}] = i\theta^{\mu\nu}$, $\theta^{\mu\nu}$ is a constant antisymmetric matrix
- We deform algebra of function on a commutative space-time

$$f \star g = e^{\frac{i}{2}\theta^{\mu\nu}\partial_{x^{\mu}}\partial_{y^{\nu}}}f(x)g(y)|_{x \to y}$$
(1)

- In general not clear how to choose a coordinate system (why would we have to choose it?)
- Generalisation: abelian Drinfeld Twist

$$f \star g = \mu \{ \mathcal{F}^{-1} f \otimes g \}, \qquad \mathcal{F}^{-1} = e^{\frac{i}{2} \theta^{AB} X_A \otimes X_B},$$

where X_A are commuting vector fields.

If we choose coordinate vector fields as X_A , we get eq. (1)

$$\begin{split} \delta_{\epsilon}\psi &= \epsilon\psi \quad \delta_{\epsilon}A = -\mathrm{D}\epsilon = -\mathrm{d}\epsilon - [A,\epsilon] \\ \delta_{\epsilon}F &= [\epsilon,F] \end{split}$$

• In commutative case we have:

$$[\delta_{\epsilon_1}, \delta_{\epsilon_2}] = \delta_{-[\epsilon_1, \epsilon_2]}.$$

• In noncommutative case one can prove that

$$[\delta_{\hat{\epsilon}_1}^{\star}, \delta_{\hat{\epsilon}_2}^{\star}]_{\star} = -\frac{1}{2} \Big(\{\hat{\epsilon}_1^A, \hat{\epsilon}_2^B\}_{\star} [T_A, T_B] + [\hat{\epsilon}_1^A, \hat{\epsilon}_2^B]_{\star} \{T_A, T_B\} \Big)$$

- Solution: Enveloping algebra approach.
- Seiberg-Witten map: NC fields are related to odinary (commutative) fields

$$\hat{A}(A + \delta_{\epsilon}A) = \hat{A}(A) + \delta_{SW}\hat{A}(A)$$

 $\delta_{SW}\hat{A} = \hat{\delta}_{\hat{\epsilon}}\hat{A} = -\mathrm{d}\hat{\epsilon} + \hat{\epsilon}\wedge_{\star}\hat{A} - \hat{A}\wedge_{\star}\hat{\epsilon}$

• From this we can calculate in the first order in θ^{AB} correction to A

$$\hat{A} = A - \frac{i}{4} \theta^{IJ} \{ A_I, \ell_J A + F_J \}$$

• We can also define star wedge product using Lie derivatives, similar as before.

Starting from $\frac{-i}{3}\kappa Tr(F \wedge F \wedge F)$ one can derive the first order correction do 5D AdS CS action :

$$S_{NC}^{(1)} = \frac{\kappa}{12} \theta^{IJ} \int \left(F^{AB}(F_I)_{BC} (D_{\omega}F_J)^C_A + \frac{1}{l^2} F_A{}^B(F_I)_{BC} (T_J)^C e^A + \frac{1}{l^2} F^{AB}(T_I)_B (D_{\omega}T_J)_A + \frac{2}{l^2} F^{AB}(T_I)_B (F_J)_{AC} e^C + \frac{1}{l^2} T^A (T_I)^B (D_{\omega}F_J)_{BA} + \frac{1}{l^2} T^A (D_{\omega}T_I)^B (F_J)_{BA} + \frac{1}{l^2} T_A (F_I)^{AB} (F_J)_{BC} e^C + \frac{2}{l^4} T_A (T_I)_B (T_J)^{[B} e^{A]} \right).$$

[Aschieri, Castellani]

- Original idea: gravity in five dimensions gives, upon compactifying the additional dimension, gravity in four dimensions plus a U(1) gauge field plus scalar (dilaton/radion)
- Reduction from five to four dimensions: compactify on S^1
- In general, fields are periodic in coordinate S^1 , so we use Fourier expansion
- This gives rise to an infinite tower of massive states, that are suppressed by a factor $\frac{1}{R}$

- In our work we will focus solely on a gravity part; we will take all fields independent of the coordinate on S^1 and will truncate other fields (apart from gravity part and a scalar) in a way to preserve SO(3,2) symmetry.
- Starting from AdS CS action in five dimensions, one obtains [Chamseddine]

$$\frac{\kappa \pi R}{4l^2} \int \varepsilon_{ABCDE} \phi^A F^{BC} F^{DE},$$

where we set $\phi^a = (\omega_4^{4a}, e_4^4)$, and truncated fields as promised before.

- This Lagrangian has SO(3,2) gauge symmetry.
- By choosing $(\phi^A = (0, 0, 0, 0, I))$ we get EH Lagrangian with cosmological constant

$$\frac{\kappa \pi R}{8I} \int \varepsilon_{abcd} \left(R^{ab} R^{cd} - \frac{2}{l^2} R^{ab} e^c e^d + \frac{1}{l^4} e^a e^b e^c e^d \right)$$

- First idea: restrict noncommutitvity to reduced 4D space-time.
- Do the reduction of the first order correction using that $X_I^4 = 0$.
- Result is **zero**
- In accordance with [Ulas Saka,Uler] and [Dimitrijevic,Radovanovic]

Noncommutativity with the extra dimension

- By taking X_l^4 different from zero, we get many surviving terms
- Luckily, after symmetry breaking, and dropping terms containing ∂X_I , we are left with only four terms

$$-\frac{\kappa\pi R}{6}\theta^{IJ}X_{I}^{\alpha}X_{J}^{4}\varepsilon^{\mu\nu\rho\sigma}\left(\frac{1}{2I^{4}}R^{ab}_{\mu\nu}T_{\rho\sigma a}e_{\alpha b}-\frac{2}{I^{4}}T^{a}_{\mu\nu}R_{\alpha\rho ab}e^{b}_{\sigma}+\frac{1}{I^{4}}R^{ab}_{\mu\nu}T_{\alpha\rho a}e_{\sigma b}+\frac{3}{I^{6}}T^{a}_{\mu\nu}e_{\rho a}g_{\alpha\sigma}\right)$$

Equations of motion

• In the commutative limit we have

$$\varepsilon_{abcd} R^{ab} e^c = 0, \quad \varepsilon_{abcd} T^a e^b = 0$$

- We can write down general variation of our NC correction, and obtain equations of motion in general.
- As in commutative limit torsion is zero, and we will work perturbatively in θ^{IJ} , we will vary only torsion in this part of the action.
- One can then get variations for vielbein fields and for spin connection:

$$-\frac{\kappa\pi R}{6}\theta^{IJ}X_{I}^{\alpha}X_{J}^{4}\varepsilon^{\mu\nu\rho\sigma}\left(-\frac{4}{l^{4}}(D_{\mu}R_{\alpha\rho ab})e_{\nu}^{b}-\frac{1}{l^{4}}R_{\mu\nu ab}D_{\rho}e_{\alpha}^{b}+\frac{6}{l^{6}}(D_{\mu}e_{\alpha b})e_{\nu}^{b}\right)\delta e_{\sigma}^{a}$$
$$-\frac{\kappa\pi R}{6}\varepsilon^{\mu\nu\rho\sigma}\left(-\frac{1}{l^{4}}R_{\rho\nu ab}e_{\alpha}^{c}-\frac{4}{l^{4}}e_{\nu}^{c}R_{\alpha\rho ab}e_{\sigma}^{b}+\frac{6}{l^{6}}e_{\nu}^{c}e_{\rho a}g_{\alpha\sigma}\right)\delta\omega_{\mu c}^{a}$$

- We start from the solution of commutative part (AdS solution) $ds^{2} = -\left(1 + \frac{r^{2}}{l^{2}}\right)dt^{2} + \frac{1}{\left(1 + \frac{r^{2}}{l^{2}}\right)}dr^{2} + r^{2}d\Omega^{2}$
- $R^{ab} = -\frac{1}{l^2}e^ae^b$
- Putting into our equation of motion, we see that this solution is still the solution, even after including the first order correction.
- Next move: $ds^2 = -(1 + \frac{r^2}{l^2} \frac{2m}{r})dt^2 + \frac{1}{(1 + \frac{r^2}{l^2} \frac{2m}{r})}dr^2 + r^2 d\Omega^2$ (work in progress!)

- J. Zanelli, [arXiv:hep-th/0502193 [hep-th]].
- A. H. Chamseddine, Nucl. Phys. B **346** (1990), 213-234 doi:10.1016/0550-3213(90)90245-9
- P. Aschieri and L. Castellani, JHEP 11 (2014), 103 doi:10.1007/JHEP11(2014)103 [arXiv:1406.4896 [hep-th]].
- M. Dimitrijević and V. Radovanovic, Phys. Rev. D **89** (2014) no.12, 125021 doi:10.1103/PhysRevD.89.125021 [arXiv:1404.4213 [hep-th]].
- E. Ulas Saka and K. Ulker, Phys. Rev. D **75** (2007), 085009 doi:10.1103/PhysRevD.75.085009 [arXiv:hep-th/0701178 [hep-th]].

The End