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Introduction

Figure: Image source: Wikipedia
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Ingreedients

• Lie Group G

• Invariant symmetric form (usually (symmetrised) Trace) on its Lie algebra〈
X1, ...,Xi , ...,Xj , ...,Xn

〉
n

=
〈
X1, ...,Xj , ...,Xi , ...,Xn

〉
n〈

X1, ...,Xn

〉
n

=
〈
UX1U

−1, ...,UXnU
−1〉

n
, U ∈ G

• Connection A on a principal bundle (aka Gauge potential)

In our work, we assume that the bundle is trivial (⇒ A = AA
µTAdx

µ).
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Chern-Weil Theorem

Curvature F = dA + A ∧ A

Theorem (Chern-Weil):
•

d
〈
F , ...,F

〉
n

= 0

• 〈
F̃ , ..., F̃

〉
n
−
〈
F , ...,F

〉
n

= dQ(Ã,A)

We can use Q(A), properly normalised, as our Lagrangian density.
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AdS CS Theory

• We will use the Trace in a certain representation of SO(4, 2) algebra.

We use generators for SO(4, 2) algebra (signautre (−,+,+,+,+,−)) as:

JAB =
1

4
[ΓA, ΓB ], A = 0, 1, 2, 3, 4;

JA5 =
1

2
ΓA,

where ΓA are five-dimensional gamma matrices satisfying Clifford algebra
{

ΓA, ΓB

}
= 2GAB .

In terms of four-dimensional gamma matrices they can be written as:

Γa = −iγa, a = 0, 1, 2, 3;

Γ4 = γ5.

Note that γ matrices written here are those for a different metric signature (+,−,−,−) (and
thus the imaginary unit in front).
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AdS CS Theory

• Take A = 1
2ω

ABJAB + 1
l e

AJA5, where ωAB is interpreted as spin connection and eA as
vierbein

• We have to set normalisation:
−i
3
κTr(F ∧ F ∧ F ) = dL

(5)
CS

Compute: L5CS = κ
8εABCDE

(
1
5l5

eAeBeCeDeE + 2
3l3

RABeCeDeE + 1
l R

ABRCDeE
)
.

More falimilar form:

κ

2l3

∫
d5x
√
−g
(
R +

6

l2
+

l2

4
(R2 − 4RµνRµν + RµνρσRµνρσ)

)
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NC Field Theory

• Standard picture: [xµ, xν ] = iθµν , θµν is a constant antisymmetric matrix

• We deform algebra of function on a commutative space-time

f ? g = e
i
2
θµν∂xµ∂yν f (x)g(y)|x→y (1)

• In general not clear how to choose a coordinate system (why would we have to choose it?)

• Generalisation: abelian Drinfeld Twist

f ? g = µ{F−1f ⊗ g}, F−1 = e
i
2
θABXA⊗XB ,

where XA are commuting vector fields.
If we choose coordinate vector fields as XA, we get eq. (1)
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NC Gauge Theories

δεψ = εψ δεA = −Dε = −dε− [A, ε]

δεF = [ε,F ]

• In commutative case we have:
[δε1 , δε2 ] = δ−[ε1,ε2].

• In noncommutative case one can prove that

[δ?ε̂1 , δ
?
ε̂2 ]? = −1

2

(
{ε̂A1 , ε̂B2 }?[TA,TB ] + [ε̂A1 , ε̂

B
2 ]?{TA,TB}

)
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NC Gauge Theories

• Solution: Enveloping algebra approach.

• Seiberg-Witten map: NC fields are related to odinary (commutative) fields

Â(A + δεA) = Â(A) + δSW Â(A)

δSW Â = δ̂ε̂Â = −dε̂+ ε̂ ∧? Â− Â ∧? ε̂

• From this we can calculate in the first order in θAB correction to A

Â = A− i

4
θIJ
{
AI , `JA + FJ

}
• We can also define star wedge product using Lie derivatives, similar as before.
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NC Correction to 5D AdS CS

Starting from −i
3 κTr(F ∧? F ∧? F ) one can derive the the first order correction do 5D AdS CS

action :

S
(1)
NC =

κ

12
θIJ
∫ (

FAB(FI )BC (DωFJ)CA +
1

l2
F B
A (FI )BC (TJ)CeA

+
1

l2
FAB(TI )B(DωTJ)A +

2

l2
FAB(TI )B(FJ)ACe

C

+
1

l2
TA(TI )

B(DωFJ)BA +
1

l2
TA(DωTI )

B(FJ)BA

+
1

l2
TA(FI )

AB(FJ)BCe
C +

2

l4
TA(TI )B(TJ)[BeA]

)
.

[Aschieri,Castellani]
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Kalutza Klein Idea

• Original idea: gravity in five dimensions gives, upon compactifying the additional
dimension, gravity in four dimensions plus a U(1) gauge field plus scalar (dilaton/radion)

• Reduction from five to four dimensions: compactify on S1

• In general, fields are periodic in coordinate S1, so we use Fourier expansion

• This gives rise to an infinite tower of massive states, that are suppressed by a factor 1
R
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Dimensional Reduction

• In our work we will focus solely on a gravity part; we will take all fields independent of the
coordinate on S1 and will truncate other fields (apart from gravity part and a scalar) in a
way to preserve SO(3, 2) symmetry.

• Starting from AdS CS action in five dimensions, one obtains [Chamseddine]

κπR

4l2

∫
εABCDEφ

AFBCFDE ,

where we set φa = (ω4a
4 , e

4
4), and truncated fields as promised before.
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Symmetry Breaking

• This Lagrangian has SO(3, 2) gauge symmetry.

• By choosing (φA = (0, 0, 0, 0, l)) we get EH Lagrangian with cosmological constant

κπR

8l

∫
εabcd

(
RabRcd − 2

l2
Rabeced +

1

l4
eaebeced

)

14 / 20



4D Noncommutativity

• First idea: restrict noncommutitvity to reduced 4D space-time.

• Do the reduction of the first order correction using that X 4
I = 0.

• Result is zero

• In accordance with [Ulas Saka,Uler] and [Dimitrijevic,Radovanovic]
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Noncommutativity with the extra dimension

• By taking X 4
I different from zero, we get many surviving terms

• Luckily, after symmetry breaking, and dropping terms containing ∂XI , we are left with
only four terms

−κπR
6

θIJXα
I X

4
J ε

µνρσ
( 1

2l4
Rab
µνTρσaeαb −

2

l4
T a
µνRαρabe

b
σ +

1

l4
Rab
µνTαρaeσb +

3

l6
T a
µνeρagασ

)
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Equations of motion

• In the commutative limit we have

εabcdR
abec = 0, εabcdT

aeb = 0

• We can write down general variation of our NC correction, and obtain equations of
motion in general.

• As in commutative limit torsion is zero, and we will work perturbatively in θIJ , we will
vary only torsion in this part of the action.

• One can then get variations for vielbein fields and for spin connection:

−κπR
6

θIJXα
I X

4
J ε

µνρσ(− 4

l4
(DµRαρab)ebν −

1

l4
RµνabDρe

b
α +

6

l6
(Dµeαb)ebν )δeaσ

−κπR
6

εµνρσ(− 1

l4
Rρνabe

c
α −

4

l4
ecνRαρabe

b
σ +

6

l6
ecν eρagασ)δωa

µc
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AdS Solution

• We start from the solution of commutative part (AdS solution)

ds2 = −
(
1 + r2

l2

)
dt2 + 1(

1+ r2

l2

)dr2 + r2dΩ2

• Rab = − 1
l2
eaeb

• Putting into our equation of motion, we see that this solution is still the solution, even
after including the first order correction.

• Next move: ds2 = −
(
1 + r2

l2
− 2m

r

)
dt2 + 1(

1+ r2

l2
− 2m

r

)dr2 + r2dΩ2 (work in progress!)

18 / 20



References

J. Zanelli, [arXiv:hep-th/0502193 [hep-th]].

A. H. Chamseddine, Nucl. Phys. B 346 (1990), 213-234 doi:10.1016/0550-3213(90)90245-9

P. Aschieri and L. Castellani, JHEP 11 (2014), 103 doi:10.1007/JHEP11(2014)103 [arXiv:1406.4896
[hep-th]].
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The End
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