4D NC Gravity from 5D NC CS Theory

Dušan Đorđević

In collaboration with Dragoljub Gočanin

Faculty of Physic,

University of Belgrade BW2021

September 9, 2021

Overview

1. Chern-Simons (CS) Lagrangian
2. NC Field Theory
3. Dimensional (KK) Reduction
4. Results

Introduction

Figure: Image source: Wikipedia

Ingreedients

- Lie Group G
- Invariant symmetric form (usually (symmetrised) Trace) on its Lie algebra

$$
\begin{gathered}
\left\langle X_{1}, \ldots, X_{i}, \ldots, X_{j}, \ldots, X_{n}\right\rangle_{n}=\left\langle X_{1}, \ldots, X_{j}, \ldots, X_{i}, \ldots, X_{n}\right\rangle_{n} \\
\left\langle X_{1}, \ldots, X_{n}\right\rangle_{n}=\left\langle U X_{1} U^{-1}, \ldots, U X_{n} U^{-1}\right\rangle_{n}, \quad U \in G
\end{gathered}
$$

- Connection A on a principal bundle (aka Gauge potential) In our work, we assume that the bundle is trivial ($\Rightarrow A=A_{\mu}^{A} T_{A} \mathrm{~d} x^{\mu}$).

Chern-Weil Theorem

Curvature $F=\mathrm{d} A+A \wedge A$
Theorem (Chern-Weil):

$$
\mathrm{d}\langle F, \ldots, F\rangle_{n}=0
$$

$$
\langle\tilde{F}, \ldots, \tilde{F}\rangle_{n}-\langle F, \ldots, F\rangle_{n}=\mathrm{d} Q(\tilde{A}, A)
$$

We can use $Q(A)$, properly normalised, as our Lagrangian density.

AdS CS Theory

- We will use the Trace in a certain representation of $\operatorname{SO}(4,2)$ algebra. We use generators for $S O(4,2)$ algebra (signautre $(-,+,+,+,+,-)$) as:

$$
\begin{gathered}
J_{A B}=\frac{1}{4}\left[\Gamma_{A}, \Gamma_{B}\right], \quad A=0,1,2,3,4 ; \\
J_{A 5}=\frac{1}{2} \Gamma_{A},
\end{gathered}
$$

where Γ_{A} are five-dimensional gamma matrices satisfying Clifford algebra $\left\{\Gamma_{A}, \Gamma_{B}\right\}=2 G_{A B}$. In terms of four-dimensional gamma matrices they can be written as:

$$
\begin{gathered}
\Gamma_{a}=-i \gamma_{a}, \quad a=0,1,2,3 ; \\
\Gamma_{4}=\gamma_{5} .
\end{gathered}
$$

Note that γ matrices written here are those for a different metric signature $(+,-,-,-$) (and thus the imaginary unit in front).

AdS CS Theory

- Take $A=\frac{1}{2} \omega^{A B} J_{A B}+\frac{1}{l} e^{A} J_{A 5}$, where $\omega^{A B}$ is interpreted as spin connection and e^{A} as vierbein
- We have to set normalisation:

$$
\frac{-i}{3} \kappa \operatorname{Tr}(F \wedge F \wedge F)=\mathrm{d} L_{C S}^{(5)}
$$

Compute: $L_{C S}^{5}=\frac{\kappa}{8} \varepsilon_{A B C D E}\left(\frac{1}{5 / 5} e^{A} e^{B} e^{C} e^{D} e^{E}+\frac{2}{3 / 3} R^{A B} e^{C} e^{D} e^{E}+\frac{1}{l} R^{A B} R^{C D} e^{E}\right)$. More falimilar form:

$$
\frac{\kappa}{2 I^{3}} \int \mathrm{~d}^{5} \times \sqrt{-g}\left(R+\frac{6}{l^{2}}+\frac{l^{2}}{4}\left(R^{2}-4 R^{\mu \nu} R_{\mu \nu}+R^{\mu \nu \rho \sigma} R_{\mu \nu \rho \sigma}\right)\right)
$$

NC Field Theory

- Standard picture: $\left[x^{\mu}, x^{\nu}\right]=i \theta^{\mu \nu}, \theta^{\mu \nu}$ is a constant antisymmetric matrix
- We deform algebra of function on a commutative space-time

$$
\begin{equation*}
f \star g=\left.e^{\frac{i}{2} \theta^{\mu \nu} \partial_{x} \partial^{\mu} \partial_{y}} f(x) g(y)\right|_{x \rightarrow y} \tag{1}
\end{equation*}
$$

- In general not clear how to choose a coordinate system (why would we have to choose it?)
- Generalisation: abelian Drinfeld Twist

$$
f \star g=\mu\left\{\mathcal{F}^{-1} f \otimes g\right\}, \quad \mathcal{F}^{-1}=e^{\frac{i}{2} \theta^{A B} X_{A} \otimes X_{B}}
$$

where X_{A} are commuting vector fields.
If we choose coordinate vector fields as X_{A}, we get eq. (1)

NC Gauge Theories

$$
\begin{gathered}
\delta_{\epsilon} \psi=\epsilon \psi \quad \delta_{\epsilon} A=-\mathrm{D} \epsilon=-\mathrm{d} \epsilon-[A, \epsilon] \\
\delta_{\epsilon} F=[\epsilon, F]
\end{gathered}
$$

- In commutative case we have:

$$
\left[\delta_{\epsilon_{1}}, \delta_{\epsilon_{2}}\right]=\delta_{-\left[\epsilon_{1}, \epsilon_{2}\right]}
$$

- In noncommutative case one can prove that

$$
\left[\delta_{\hat{\epsilon}_{1}}^{\star}, \delta_{\hat{\epsilon}_{2}}^{\star}\right]_{\star}=-\frac{1}{2}\left(\left\{\hat{\epsilon}_{1}^{A}, \hat{\epsilon}_{2}^{B}\right\}_{\star}\left[T_{A}, T_{B}\right]+\left[\hat{\epsilon}_{1}^{A}, \hat{\epsilon}_{2}^{B}\right]_{\star}\left\{T_{A}, T_{B}\right\}\right)
$$

NC Gauge Theories

- Solution: Enveloping algebra approach.
- Seiberg-Witten map: NC fields are related to odinary (commutative) fields

$$
\begin{gathered}
\hat{A}\left(A+\delta_{\epsilon} A\right)=\hat{A}(A)+\delta_{S W} \hat{A}(A) \\
\delta_{S W} \hat{A}=\hat{\delta}_{\hat{\epsilon}} \hat{A}=-\mathrm{d} \hat{\epsilon}+\hat{\epsilon} \wedge_{\star} \hat{A}-\hat{A} \wedge_{\star} \hat{\epsilon}
\end{gathered}
$$

- From this we can calculate in the first order in $\theta^{A B}$ correction to A

$$
\hat{A}=A-\frac{i}{4} \theta^{\prime J}\left\{A_{l}, \ell_{J} A+F_{J}\right\}
$$

- We can also define star wedge product using Lie derivatives, similar as before.

NC Correction to 5D AdS CS

Starting from $\frac{-i}{3} \kappa \operatorname{Tr}\left(F \wedge^{\star} F \wedge^{\star} F\right)$ one can derive the the first order correction do 5D AdS CS action :

$$
\begin{aligned}
S_{N C}^{(1)}=\frac{\kappa}{12} \theta^{\prime J} \int(& F^{A B}\left(F_{l}\right)_{B C}\left(\mathrm{D}_{\omega} F_{J}\right)_{A}^{C}+\frac{1}{1^{2}} F_{A}^{B}\left(F_{l}\right)_{B C}\left(T_{J}\right)^{C} e^{A} \\
& +\frac{1}{l^{2}} F^{A B}\left(T_{l}\right)_{B}\left(\mathrm{D}_{\omega} T_{J}\right)_{A}+\frac{2}{l^{2}} F^{A B}\left(T_{l}\right)_{B}\left(F_{J}\right)_{A C} e^{C} \\
& +\frac{1}{l^{2}} T^{A}\left(T_{I}\right)^{B}\left(\mathrm{D}_{\omega} F_{J}\right)_{B A}+\frac{1}{l^{2}} T^{A}\left(\mathrm{D}_{\omega} T_{l}\right)^{B}\left(F_{J}\right)_{B A} \\
& \left.+\frac{1}{l^{2}} T_{A}\left(F_{l}\right)^{A B}\left(F_{J}\right)_{B C} e^{C}+\frac{2}{l^{4}} T_{A}\left(T_{l}\right)_{B}\left(T_{J}\right)^{[B} e^{A]}\right)
\end{aligned}
$$

[Aschieri,Castellani]

Kalutza Klein Idea

- Original idea: gravity in five dimensions gives, upon compactifying the additional dimension, gravity in four dimensions plus a $U(1)$ gauge field plus scalar (dilaton/radion)
- Reduction from five to four dimensions: compactify on S^{1}
- In general, fields are periodic in coordinate S^{1}, so we use Fourier expansion
- This gives rise to an infinite tower of massive states, that are suppressed by a factor $\frac{1}{R}$

Dimensional Reduction

- In our work we will focus solely on a gravity part; we will take all fields independent of the coordinate on S^{1} and will truncate other fields (apart from gravity part and a scalar) in a way to preserve $S O(3,2)$ symmetry.
- Starting from AdS CS action in five dimensions, one obtains [Chamseddine]

$$
\frac{\kappa \pi R}{4 l^{2}} \int \varepsilon_{A B C D E} \phi^{A} F^{B C} F^{D E}
$$

where we set $\phi^{a}=\left(\omega_{4}^{4 a}, e_{4}^{4}\right)$, and truncated fields as promised before.

Symmetry Breaking

- This Lagrangian has $S O(3,2)$ gauge symmetry.
- By choosing ($\phi^{A}=(0,0,0,0, I)$) we get EH Lagrangian with cosmological constant

$$
\frac{\kappa \pi R}{8 I} \int \varepsilon_{a b c d}\left(R^{a b} R^{c d}-\frac{2}{l^{2}} R^{a b} e^{c} e^{d}+\frac{1}{l^{4}} e^{a} e^{b} e^{c} e^{d}\right)
$$

4D Noncommutativity

- First idea: restrict noncommutitvity to reduced $4 D$ space-time.
- Do the reduction of the first order correction using that $X_{l}^{4}=0$.
- Result is zero
- In accordance with [Ulas Saka,Uler] and [Dimitrijevic,Radovanovic]

Noncommutativity with the extra dimension

- By taking X_{I}^{4} different from zero, we get many surviving terms
- Luckily, after symmetry breaking, and dropping terms containing ∂X_{l}, we are left with only four terms

$$
-\frac{\kappa \pi R}{6} \theta^{I J} X_{l}^{\alpha} X_{j}^{4} \varepsilon^{\mu \nu \rho \sigma}\left(\frac{1}{2 /^{4}} R_{\mu \nu}^{a b} T_{\rho \sigma a} e_{\alpha b}-\frac{2}{1^{4}} T_{\mu \nu}^{a} R_{\alpha \rho a b} e_{\sigma}^{b}+\frac{1}{1^{4}} R_{\mu \nu}^{a b} T_{\alpha \rho a} e_{\sigma b}+\frac{3}{1^{6}} T_{\mu \nu}^{a} e_{\rho a} g_{\alpha \sigma}\right)
$$

Equations of motion

- In the commutative limit we have

$$
\varepsilon_{a b c d} R^{a b} e^{c}=0, \quad \varepsilon_{a b c d} T^{a} e^{b}=0
$$

- We can write down general variation of our NC correction, and obtain equations of motion in general.
- As in commutative limit torsion is zero, and we will work perturbatively in $\theta^{I J}$, we will vary only torsion in this part of the action.
- One can then get variations for vielbein fields and for spin connection:

$$
\begin{gathered}
-\frac{\kappa \pi R}{6} \theta^{I J} X_{l}^{\alpha} X_{J}^{4} \varepsilon^{\mu \nu \rho \sigma}\left(-\frac{4}{1^{4}}\left(\mathrm{D}_{\mu} R_{\alpha \rho a b}\right) e_{\nu}^{b}-\frac{1}{1^{4}} R_{\mu \nu a b} \mathrm{D}_{\rho} e_{\alpha}^{b}+\frac{6}{1^{6}}\left(\mathrm{D}_{\mu} e_{\alpha b}\right) e_{\nu}^{b}\right) \delta e_{\sigma}^{a} \\
-\frac{\kappa \pi R}{6} \varepsilon^{\mu \nu \rho \sigma}\left(-\frac{1}{1^{4}} R_{\rho \nu a b} e_{\alpha}^{c}-\frac{4}{1^{4}} e_{\nu}^{c} R_{\alpha \rho a b} e_{\sigma}^{b}+\frac{6}{1^{6}} e_{\nu}^{c} e_{\rho a} g_{\alpha \sigma}\right) \delta \omega_{\mu c}^{a}
\end{gathered}
$$

AdS Solution

- We start from the solution of commutative part (AdS solution)

$$
\mathrm{d} s^{2}=-\left(1+\frac{r^{2}}{1^{2}}\right) \mathrm{d} t^{2}+\frac{1}{\left(1+\frac{r^{2}}{1^{2}}\right)} \mathrm{d} r^{2}+r^{2} \mathrm{~d} \Omega^{2}
$$

- $R^{a b}=-\frac{1}{1^{2}} e^{a} e^{b}$
- Putting into our equation of motion, we see that this solution is still the solution, even after including the first order correction.
- Next move: $\mathrm{ds}^{2}=-\left(1+\frac{r^{2}}{1^{2}}-\frac{2 m}{r}\right) \mathrm{d} t^{2}+\frac{1}{\left(1+\frac{r^{2}}{1^{2}}-\frac{2 m}{r}\right)} \mathrm{d} r^{2}+r^{2} \mathrm{~d} \Omega^{2}$ (work in progress!)

References

J．Zanelli，［arXiv：hep－th／0502193［hep－th］］．
A．H．Chamseddine，Nucl．Phys．B 346 （1990），213－234 doi：10．1016／0550－3213（90）90245－9
P．Aschieri and L．Castellani，JHEP 11 （2014）， 103 doi：10．1007／JHEP11（2014）103［arXiv：1406．4896 ［hep－th］］．

M．Dimitrijević and V．Radovanovic，Phys．Rev．D 89 （2014）no．12， 125021 doi：10．1103／PhysRevD． 89.125021 ［arXiv：1404．4213［hep－th］］．
显
E．Ulas Saka and K．Ulker，Phys．Rev．D 75 （2007）， 085009 doi：10．1103／PhysRevD． 75.085009 ［arXiv：hep－th／0701178［hep－th］］．

The End

