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A little bit of history

 1974. Hawking discovered that black holes emit radiation. The main 

problem was that his calculation was in dispute with quantum mechanics’ 

unitary evolution. Hence we have information loss paradox.

 1992. Don Page proposes a curve that entropy should follow if the evolution 

was indeed unitary. Many attempts were made in the following years to 

reproduce that curve. They were unsuccessful until late 2010s

 During the nineties many toy models were created to study black hole 

evaporation. Most prominent being JT and RST/BPP models. In JT model 

Page’s curve was, finally, reproduced in 2019, while in the RST/BPP it was 

reproduced in 2020-2021 with help of a new formula for fine-grained 

entropy in gravitational systems developed by Maldecena in 2013.



Information paradox

 Hawking’s curve:  Page’s curve:



Replica wormholes

 A method for calculating fine-grained entropy in gravitational systems 

based on euclidean gravitational path integral:

 It is a method developed by Hawking. He used the exact same method to 

derive generalized entropy formula as course-grained entropy during the 

seventies:



Replica wormholes

 Hawking’s calculation for the fine-grained entropy of quantum fileds, 

outside the black hole, results into fine-grained entropy as always 

increasing function of time. That is why we have information paradox!

 What is wrong with Hawking’s calculation?

Answer: He used wrong saddle point in gravitational path integral!

 When you consider summing over topologies, you get two saddle points in 

gravitational path integral. One corespondes to Hawking’s result, and the 

other coresponds to replica wormholes result. The one that is a global 

minimum is used when calculating path integral. Over time the global 

minimum changes between these two saddle points. That point in time 

coresponds to a phase transition which occures at Page’s time.



Let’s say that singularity formed from a pure state        . Then we have density 
matrix:                   .  We have a basis of final states of radiation after the black 
hole has evaporated given by:          . In the picture above we have 
represented matrix elements of density matrix in this final moment of 
evaporation, as well as the trace of this density matrix. What we are interested 
in is if that final state is pure or mixed. Than can be checked using usual purity 
condition:                              . We can check this using diagrams as well!



Now we have two copies of matrix elements:                     . We need to connect 

interiors. In this case we can do that in two ways. This is one of them. It is obvious

that here we have only one closed loop. So this does  not corespond to the pure 
state.



In this case it is obvious that the final state is pure. This case coresponds to 

replica wormholes saddle point, while the previous one coresponds to 

Hawking’s saddle point. That means that the minimum at the end of the 

evaporation should be given by the replica wormholes’ saddle point!



Replica trick and fine-grained entropy

 Using simmilar replica trick we can calculate fine-grained entropy:

 For arbitrary n, we have many different ways to connect the interiors, so the 

calculation is much more complicated. When you use this trick you get 

fine-grained formula for gravitational systems given by:



Island rule

 Object I that with respact to 
which we minimize expression in 
the formula for fine-grained 
entropy is called an island. It is a 
codimension 2 surfice (X in the 
picture).

 If there is no island, it is obvious, 
that we get Hawking’s result, but 
if there is an island, then we get 
replica wormholes result. That 
means that during evaporation, 
sometimes we will have island 
present, and sometimes we 
won’t.



Island rule and Page’s curve

In this picture we see how we reproduce Page’s curve using formula for fine-

grained entropy in gravitational systems!



BPP model

 This is exactly solvable model of 2D dilaton gravity. The action for classical 

CGHS model is given by:

 To this action  we add quantum fluctuations trought Polyakov-Liouville term:

 To be exactly solvable we add an additional term to the action:



BPP model-equations of motion

 We fix conformal gauge:                             . We can fix Kruskla gauge:          

as well. In this gauge, solution to the equations of motion is given by:

 There are few solutions that are worth mentioning:

1. Linear dilaton vacuum

2. Static black hole

3. Minkowski vacuum

4. Gravitational collapse scenario



Eternal black hole in BPP

 This is a static black hole solution. 

The metric is given by:

 On the left side we can see a 

conformal diagram. It is the same 

as for the Schwarzschild black 

hole.

 Conformal diagram:



Gravitational collapse scenario in BPP

 This is a dynamic scenario where 

a singularity is formed from 

collapsing matter. The metric is 

given by:

 On the left side we can see a 

conformal diagram for this 

dynamical solution.

 This



Page curve for eternal black hole (BPP)

 First we do the calculation 

without the island.

 Formula for fine-grained entropy is 

given by:

 At late time the dominant term is:

 The coordinate transformation is 

given by:

 The situation on the conformal 
diagram is given by:

 This is Hawking’s result, where fine-
grained entropy always increases



Page curve for eternal black hole (BPP)
 Now we do calculation with 

island present.

 The semiclassical entropy is:

 Extremizing with respect to 𝑡′ and 

𝑎, we find that the minimum is 

given by 𝑡′ = 𝑡 and:

 The global minimum is given by 

the plus sign

 For the gravitational part we have:

 The entropy at late time becomes 

constant: 𝑆 = 2𝑆𝐵𝐻!



Thus we have reproduced the Page 

curve!



Page curve for evaporating black hole
 Once again we start with no 

island calculation. The entropy is 

given by:

 At late time the dominant term is:

 The coordinate transformation is 

given by:

 We need to write 𝜎 in terms of ො𝜎
coordinates!

 The situation on the conformal 

diagram is given by:

 We see that we have Hawking’s 

result once more



Page curve for evaporating black hole

 Now we consider an island rule 

entropy. A formula for 

semiclassical entropy is 

complicated in this case, so we 

are not going to present it here. 

 After the calculation, the position 

of the island is given by:

 The entropy at late time 

becomes:

 The situation on the conformal 

diagram is given by:



Page curve for evaporating black hole in BPP model
We have once again reproduced the Page curve. Fine-grained entropy is 
given by:                                          From this we see when the phase transition    

occures, and get the Page time.



Dimensional reduction of Einstein-

Hilbert action

 After dimensional reduction action becomes:

 We again add Polyakov-Liouville term  to get quantum fluctuations:

 The main difference is that this time we cannot add any correction terms to 

make our model exactly solvable. So we will continue perturbatively.

 This model has Schwarzschild solution as classical solution. We continue by 

finding the correction to this solution in the first order with respect to ℏ.



Eternal black hole

 Using same methods that we discussed in the case of eternal black hole in 

the BPP model, we get the following results:

 In the case without an island (at late times):

 Where 𝜅 is quantum corrected surfice gravity. We see that we once again 

get Hawking’s result.

 In the case with an island (at late times): 𝑆 = 2𝑆𝐵𝐻 .

 Again we get the same result as in the BPP model.

 The island appears near the horizon at radius:

 Where 𝑟ℎ is quantum corrected event horizont and 𝜖 is perturbation 

parameter that is proportional to ℏ.



Thank you for your attention!


