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Integrable Hamiltonian systems
The phase space R2n(x , p). Hamiltonian equations:

ẋi =
∂H

∂pi
, ṗi = −∂H

∂xi
, i = 1, . . . , n.

f1, . . . , f2n−d 0 first integrals, such that

{fi , fj} = 0, i = 1, . . . , d , j = 1, . . . , 2n − d

Compact connected invariant level sets are d-dimensional tori. The
trajectories are quasi-periodic:

ϕi (t) = ωi t + ϕ0i , i = 1, . . . , d .



The Neumann system

The motion of a point on the unit sphere
Sn−1 = {〈x , x〉 = 1} ⊂ Rn, with the quadratic potential

V (x) =
1
2
〈x ,Ax〉, A = diag(a1, . . . , an) :

Tangent bundle TSn−1: 〈x , x〉 = 1, 〈x , ẋ〉 = 0.

The equations:

ẍ = −Ax + νx ,

where the Lagrange multiplier is ν = −〈ẋ , ẋ〉+ 〈x ,Ax〉.

The Hamilton-Jacobi equations are separable in sphero-conical
variables and system is completely integrable.



Confocal cones and sphero-conical coordinates

Q0(λ) =

{
x2
1

a1 − λ
+ · · ·+ x2

n

an − λ
= 0
}
.



Confocal quadrics and elliptic coordinates

Q1(λ) =

{
x2
1

a1 − λ
+ · · ·+ x2

n

an − λ
= 1
}
.



Geometric manifestation of integrability

Theorem (Moser)
Let x(t) be a solution of the Neumann system on TSn−1. Then the
associated line

l(t) = ẋ(t) + span{x(t)}

is tangent to n − 1 fixed confocal quadrics of the family Q1(λ).

Theorem (Chasles)
Let x(t) be a geodesic line on the ellipsoid

En−1 = Q1(0) = 〈x ,A−1x〉 = 1,

then the associated line

l(t) = x(t) + span{ẋ(t)}

is tangent to n − 1 fixed confocal quadrics of the family Q1(λ).
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Nonholonomic systems

We consider (M, L,D) a nonholonomic Lagrangian system, where
D, is locally defined by 1-forms αa, a = 1, . . . , k

(αa, q̇) =
n∑

i=1

αa
i (q)q̇i = 0, a = 1, . . . , k .

The equations of the motions are

d

dt

∂L

∂q̇i
=

∂L

∂qi
+

k∑
a=1

λaα
a
i , i = 1, . . . , n,

n∑
i=1

αa
i (q)q̇i = 0

For natural mechanical systems L = 1
2〈q̇, q̇〉 = 1

2
∑

ij gij q̇
i q̇j − V (q)

the equations become

〈∇q̇ q̇ + gradV (q), ξ〉 = 0, q̇, ξ ∈ Dq.

where ∇ is Levi-Chivita connection for the metric g .



It is natural to define connection of the vector bundle D → M:

∇P : Γ(TM)× Γ(D) −→ Γ(D), ∇P
XY := P(∇XY ),

where P is the orthogonal projection to D. It is a metric connection
and the equations are equivalent to

∇P
q̇ q̇ = gradDV (q), q̇ ∈ Dq,

where gradD V = P(gradV ).
If V ≡ 0, one gets the equations of geodesic lines (so called
nonholonomic geodesics)

∇P
q̇ q̇ = 0, q̇ ∈ Dq.



Chaplygin reduction

Suppose that π : M → N = M/G is a principal bundle with respect
to the left action of a Lie group G , D is a G -invariant distribution
(collection of horizontal spaces) and TqM = Dq ⊕ Vq for all q,
where Vq is tangent to the G–orbit through q. Given a vector
Xq ∈ TqM, there is a decomposition Xq = X h

q + X v
q . The curvature

of D is the vertical valued 2-form K on M defined by

K (Xq,Yq) = −[X̄ h
q , Ȳ

h
q ]vq,

where X̄ and Ȳ are smooth vector fields on M obtained by
extending of Xq and Yq.
Suppose that G acts by isometries on (M, g) and that V is
G–invariant.



Then the equations are G -invariant and the restriction L|D induces
the reduced Lagrangian Lred , i.e, the reduced metric g0 and the
reduced potential energy V0, via identification TN ≈ D/G . The
reduced Lagrange–d’Alambert equations on the tangent bundle TN
take the form(∂Lred

∂x
− d

dt

∂Lred
∂ẋ

, η
)

= 〈ẋh,Kq(ẋh, ηh)〉|q for all η ∈ TxN,

where q ∈ π−1(x) and ẋh and ηh are unique horizontal lifts of ẋ
and η at q. The right-hand side can be written as Σ(ẋ , ẋ , η) where
Σ is (0, 3)–tensor field on the base manifold N defined by

Σx(X ,Y ,Z ) = 〈X h,Kq(Y h,Zh)〉|q, q ∈ π−1(x).

The system (M, g ,V ,D,G ) is referred to as a G–Chaplygin system
(Koiller, Arch. R. Mech, 1992).



Let ∇0 is the Levi-Civita connection of the reduced metric g0. The
reduced equations can be written as

〈∇0
ẋ ẋ + gradV0(x), η〉0 + Σ(ẋ , ẋ , η) = 0,

that is
∇0

ẋ + B(ẋ , ẋ) = − gradV0(x),

where the gradient is taken with respect to the reduced metric g0,
and tensor field B is defined by

〈B(X ,Y ),Z 〉0 = Σ(X ,Y ,Z ).

Now, the equations can be written

∇B
ẋ ẋ = − gradV0,

where ∇B is a symmetric connection defined by

∇B
X Y = ∇0

X Y +
1
2
(
B(X ,Y ) + B(Y ,X )

)
.

The connection ∇B , for Abelian Chaplygin systems, is firstly
introduced by Aleksandar Bakša (Mat. Vesnik, 1975)



Chaplygin multiplier method
The nonholonomic equations are not variational. For the reduced
Abelian Chaplygin systems, Chaplygin proposed the
Hamiltonization method using a time reparametrization
dτ = ν(x)dt now referred as a Chaplygin multiplier.
Denote x ′ = dx/dτ = ν−1ẋ . The Lagrangian Lred in the
coordinates (x , x ′) takes the form

L∗(x , x ′) =
1
2

∑
ν2g0ijx

′
i x
′
j − V0(x).

We are looking for a function ν(x) 6= 0 such that the reduced
Chaplygin system

d

dt

∂Lred
∂ẋi

=
∂Lred
∂xi

+
n∑

k,l ,j=1

C k
ij (x)g0kl ẋl ẋj (1)

after a time reparametrization dτ = ν(x)dt becomes the
Lagrangian system

d

dt

∂L∗

∂x ′i
=
∂L∗

∂xi
, i = 1, . . . , n. (2)



In terms of connections, the Chaplygin multiplier is a function
ν(x) 6= 0 such that the reduced equation in the new time takes the
form

∇∗x ′ x ′ = − grad∗ V0,

where ∇∗ is the Levi-Civita connection of the conformal metric
g∗ = ν2g0 on the base manifold N.



Time reparametrization and conformal metrics
We will slightly modify the Chaplygin method by allowing the
conformal factor and multiplier ν to be independent.
Consider the conformal metrics g∗ = f 2g and g on M (f 6= 0 on
M). The coefficients of their Levi-Civita connections ∇∗ and ∇ are
related by

Γ∗kij = Γk
ij +

1
f

(
δkj
∂f

∂qi
+ δki

∂f

∂qj
− gijg

kl ∂f

∂ql
)
.

Consider the geodesic equations ∇∗q′ q′ = 0 of (M, g∗),

d2qk

dτ2 + Γ∗kij
dqi

dτ

dqj

dτ
= 0,

with respect to the affine parameter τ , and perform the
time-reparametrisation

dτ = ν(q)dt : q̇ = ν · q′ (ν 6= 0).

The equations can be written as

q̈k + Γk
ij q̇

i q̇j =
∂ ln ν

∂qr
q̇r q̇k − 1

f

(
2
∂f

∂qi
q̇i q̇k − gijg

kl ∂f

∂ql
q̇i q̇j

)
.



Proposition
Assume that on a Riemannian manifold (M, g) we have Newton
equations

∇q̇ q̇ = F (q̇, q),

such that the force field can be written in the form

F = 〈grad ln ν, q̇〉q̇ − 2〈grad ln f , q̇〉q̇ + 〈q̇, q̇〉grad ln f ,

for certain functions f , ν 6= 0, on M. Then, after a time
reparametrisation dτ = ν(q)dt, the equations take the form of the
equations of the geodesic lines

∇∗q′ q′ = 0

of the metric g∗ = f 2g .
If we take ν = f α, the above expression is slightly simplified:

F = (α− 2)〈grad ln f , q̇〉q̇ + 〈q̇, q̇〉grad ln f .



Note that the geodesic equation ∇∗q′ q′ = 0 has the kinetic energy
integral 1

2〈q
′, q′〉∗. Therefore, the system ∇q̇ q̇ = F (q̇, q), has the

quadratic first integral f 2/2ν2〈q̇, q̇〉, which is an obstruction to the
construction.
However, Proposition can be formulated also with a weaker
assumption: for the Newton equation having an invariant relation

E =
{

(q̇, q) ∈ TM | 1
2
〈q̇, q̇〉 − ν2

f 2 = 0
}
,

when the force F restricted to E reads

F = (α− 2)〈grad ln f , q̇〉q̇ + f 2α−4 grad f 2, for ν = f α.

Then the solution of ∇q̇ q̇ = F (q̇, q) that belong to the invariant
surface E are mapped to the geodesic lines ∇∗q′ q′ = 0 with the unit
kinetic energy 1

2〈q
′, q′〉∗ = 1.



In the case α = 2, we have F = grad f 2. By taking
f =

√
h − V (q), the invariant relation is

1
2
〈q̇, q̇〉+ V (q) = h,

and F = − gradV . We have the identity

∇J
q′ q
′ = (h − V )−2(∇q̇ q̇ + gradV

)
,

where ∇J is the Levi-Civita connection of the Jacobi metric
gJ = (h − V )g and

dτ = (h − V )dt.

We obtain a well known formulation of the Maupertuis principle:
the solutions q(t) of the Newton equations ∇q̇ q̇ = − gradV that
satisfy 1

2〈q̇, q̇〉+ V (q) = h, in the new time τ are geodesic lines
q(τ) of the Jacobi metric with the unit kinetic energy
1
2gJ(q′, q′) = 1.



Chaplygin ball rolling over the sphere in Rn

We consider the Chaplygin ball type problem of rolling without
slipping and twisting of an n-dimensional balanced ball of radius ρ
in the following cases:
(i) rolling over outer surface of the (n − 1)-dimensional fixed

sphere of radius σ;
(ii) rolling over inner surface of the (n − 1)-dimensional fixed

sphere of radius σ (σ > ρ);
(iii) rolling over outer surface of the (n − 1)-dimensional fixed

sphere of radius σ, but the fixed sphere is within the rolling
ball (σ < ρ, in this case, the rolling ball is actually a spherical
shell).



Configuration space is direct product of Lie groups SO(n) and Rn.
g ∈ SO(n) is the rotation matrix, which maps a frame attached to
the body to the space frame, and r =

−→
OC ∈ Rn is the position

vector of the ball center C in the space frame, where the origin O
coincides with the center of the fixed sphere. The vector r belongs
to the (n − 1)-dimensional constraint sphere defined by
(r, r) = (σ ± ρ)2 ("+"for the case (i) and "−"for the cases (ii) and
(iii)).



The condition that the ball to role without slipping and the of
non-twisting at the contact point defines (n − 1)-dimensional
constraint distribution D, which is the principal connection of the
bundle

SO(n) −→ SO(n)× Sn−1 π−→ Sn−1

with respect to the SO(n)-action a · (g , r) = (ag , ar), a ∈ SO(n).
The submersion π is given by

γ = π(g , r) =
1

σ ± ρ
g−1r

and γ is a unit vector, the direction of the contact point in the
frame attached to the ball. Thus, the problem of the rubber rolling
of a ball over a fixed sphere is a SO(n)–Chaplygin system and
reduces to the tangent bundle TSn−1 ∼= D/SO(n).



The equation describing the motion of the reduced system are(
ε
d

dt

(
I(γ ∧ γ̇)γ

)
+ (1− ε)I(γ ∧ γ̇)γ̇, ξ

)
= 0, ξ ∈ TγS

n−1.

where I = I + D · Idso(n), D = mρ2, and ε = σ/(σ ± ρ).
Let A = diag(a1, . . . , an). For the special inertia operator

I(Ei ∧ Ej) = (aiaj − D)Ei ∧ Ej i.e., I(X ∧ Y ) = AX ∧ AY .

under the time substitution dτ = ε(Aγ, γ)
1
2ε−1 dt, the reduced

system becomes the geodesic flow of the metric g∗ with the
Lagrangian

L∗(γ′, γ) =
1
2

(γ,Aγ)
1
ε
−2((Aγ′, γ′)(Aγ, γ)− (Aγ, γ′)2)



Integrability for ρ = 2σ

In three-dimensional case, Borisov and Mamaev (RCD 2007) proved
the integrability of the rubber rolling for a specific ratio between
radiuses of the ball and the spherical shell (the case (iii), where
ρ = 2σ, i.e, ε = −1). We proceed in proving the complete
integrability of the n-dimensional variant of the problem



Lemma
Under the transformation

x =
A

1
2γ√

(Aγ, γ)
.

the metric g∗ transforms to the metric

g(X ,Y ) = (x ,A−1x)−
1
ε (X ,Y ), X ,Y ∈ TxS

n−1,

conformally equivalent to the standard metric on the sphere

(x , x) = 1.

Considered a natural mechanical system on the sphere (x , x) = 1
with the Lagrangian

Lε =
1
2
(dx
ds
,
dx

ds

)
− Vε(x), Vε(x) = −(A−1x , x)−

1
ε .



According to the Maupertuis principle, the trajectories x(s) of the
system with Lagrangian Lε laying on the zero-energy invariant
surface

1
2

(
dx

ds
,
dx

ds
)− (A−1x , x)−

1
ε = 0, (3)

after a time reparametrization

dτ = (A−1x , x)−
1
ε ds,

become the geodesic lines x(τ) of the metric g with the unit kinetic
energy 1

2g(x ′, x ′) = 1 (x ′ = dx/dτ).
On the other hand, the solutions γ(t) of the reduced nonholonomic
problem, after a time reparametrization

dτ = ε(Aγ, γ)
1
2ε−1 dt = ε(A−1x , x)1− 1

2ε dt

become the geodesic lines x(τ) of the metric g with the same
kinetic energy

1
2
g0(γ̇, γ̇) =

1
2
g∗(γ

′, γ′) =
1
2
g(x ′, x ′).



Combining the above transformations we obtain the proof of the
statement.

Proposition
The trajectories γ(t) of the rolling of a rubber Chaplygin ball over a
spherical surface with the unit velocity 〈γ̇, γ̇〉0 = 1, under the

transformation x = A
1
2 γ√

(Aγ,γ)
and time reparametrisation

ds = ε(A−1x , x)1+ 1
2ε dt (= ε(Aγ, γ)−1− 1

2ε dt),

are mapped to the zero-energy trajectories x(s) of the natural
mechanical systems with the Lagrangian Lε:

d2

ds2 x = −2
ε

(
A−1x , x

)− 1
ε
−1

A−1x+λx , λ =
2
ε

(
A−1x , x

)− 1
ε−
(dx
ds
,
dx

ds

)
.



Among the potentials Vε, there are two exceptional ones
determining completely integrable systems: for ε = +1 we have
Braden’s and for ε = −1 Neumann’s potential.

Theorem
For an special inertia operator and ρ = 2σ (ε = −1), the reduced
problem of the rolling of a rubber Chaplygin ball over a spherical
surface is completely integrable: under time reparametrisation

ds = −(A−1x , x)
1
2 dt (= −(Aγ, γ)−

1
2 dt),

the solutions γ(t) of reduced equation with the unit velocity
〈γ̇, γ̇〉0 = 1 are mapped to the zero-energy trajectories x(s) of the
Neumann system with Lagrangian L−1.



Symmetric ball

Theorem
For the inertia operator I(Ei ∧ Ej) = (aiaj − D)Ei ∧ Ej , where

a1 = a2 = · · · = al = α0 6= al+1 = al+2 = · · · = an = α1,

the reduced system is integrable for all ε: generic motions, up to a
time reparametrisation, are quasi periodic over three dimensional
invariant tori. For l = 1 or l = n − 1, the invariant tori are
two-dimensional.



Almost Hamiltonian formulation of Chaplygin systems
The Hamiltonian function

H(x , p) =
1
2

(p, g−1(p)) + v(x) =
1
2

∑
g0ijpipj + V0(x)

(the usual Legendre transformation of Lred), where
(p1, . . . , pn, x1, . . . , xn) are the canonical coordinates of the
catangent bundle T ∗N,

pi = ∂Lred/∂ẋi =
∑
j

gij ẋj ,

and {g0ij} is the inverse of the metric matrix {g0ij}. In the
canonical coordinates the reduced equations take the form

ẋi =
∂H

∂pi
=

n∑
j=1

g ijpj , (4)

ṗi = −∂H
∂xi

+
n∑

k,j=1

C k
ij (x)pk

∂H

∂pj
. (5)



Chaplygin multiplier: from the Lagrangian to the
Hamiltonian framework

Consider the time substitution dτ = ν(x)dt and the Lagrangian
function L∗(x , x ′). Then the conjugate momenta are

p̃i = ∂L∗/∂x ′i = ν2
∑
j

g0ijx
′
j ,

and the corresponding Hamiltonian reads

H∗(x , p̃) =
1
2

∑ 1
ν2 g

0ij p̃i p̃j + V0(x).

We have the following commutative diagram:

TN{x , ẋ} x ′=ν−1ẋ−−−−−→ TN{x , x ′}

p=g0(ẋ)

y yp̃=ν2g0(x ′)

T ∗N{x , p} p̃=νp−−−−→ T ∗N{x , p̃}.



Let Ω̃ be the canonical symplectic form on T ∗N with respect to the
coordinates (x , p̃). Then

Ω̃ =
∑
i

dp̃i∧dxi = νΩ+dν∧θ, θ = p1dx1+. . . pndxn, Ω = dθ.

Thus, H and H∗ represents the same Hamiltonian function on T ∗N
written in two coordinate systems related by non-canonical change
of variables

(x , p) 7−→ (x , p̃). (6)

The function ν is the Chaplygin multiplier if the equations (4), (5),
after the time parametrisation dτ = ν(x)dt and coordinate
transformation (6) becomes the Hamiltonian equation with respect
to the symplectic form Ω̃, that is, we have:

x ′i =
∂H∗

∂p̃i
(x , p̃), p̃′i = −∂H

∗

∂xi
(x , p̃).



Chaplygin multiplier and an invariant measure

If ν is Chaplygin multiplier, then the reduced equations

ẋi =
∂H

∂pi
=

n∑
j=1

g ijpj ,

ṗi = −∂H
∂xi

+
n∑

k,j=1

C k
ij (x)pk

∂H

∂pj
.

preserve the measure νn−1Ωn. For n = 2 the statement can be
inverted.



Manakov metrics
Generally, for n ≥ 4, the operator I(Ei ∧ Ej) = (aiaj − D)Ei ∧ Ej is
not a physical inertia operator of a multidimensional rigid body that
has the form

ω 7−→ Iω + ωI , I = diag(I1, . . . , In).

Here I is a positive definite matrix called the mass tensor, which is
diagonal in the moving orthonormal base determined by the
principal axes of inertia.
Then we can write the modified operator I = I + D · Idso(n) as

Iω = ε2
(
Jω + ωJ

)
,

where

J = diag(J1, . . . , Jn) =
1
ε2

diag
(
I1 +

D

2
, · · · , In +

D

2
)
,

and the Legendre transformation takes the form

p = −J(γ ∧ γ̇)γ − (γ ∧ γ̇)Jγ = J γ̇ + (Jγ, γ)γ̇ − (Jγ, γ̇)γ.



The reduced equations
The point (p, γ) belongs to the cotangent bundle of a sphere
realized as a symplectic submanifold in the symplectic linear space
(R2n(p, γ), dp1 ∧ dγ1 + · · ·+ dpn ∧ dγn):

(γ, γ) = 1, (γ, p) = 0.

The reduced equations:

γ̇ = Cγ
(
p − (p,Cγ(γ))

(γ,Cγ(γ))
γ
)

(7)

ṗ =
1− ε
ε

(
(Xγ ,Xγ)Jγ − (γ, JXγ)Xγ − (Xγ ,Xγ)(γ, Jγ)γ

)
− 2Hγ,

(8)
Here

Cγ = diag(J1 + (γ, Jγ), · · · , Jn + (γ, Jγ))−1,

H(p, γ) =
1
2

(p,Cγ(p))− 1
2

(p,Cγ(γ))2

(γ,Cγ(γ))
.



Invariant measure

Let w be the canonical symplectic form on T ∗Sn−1:

w = dp1 ∧ dγ1 + · · ·+ dpn ∧ dγn |T∗Sn−1 .

Theorem
The reduced system (7), (8) has an invariant measure

µ(γ)wn−1 =
( detCγ

(γ,Cγ(γ))

)1− 1
2εwn−1. (9)

Theorem
Assume that n ≥ 4, ε 6= 1/2, and Ji = Jj 6= Jk = Jl for some
mutually different indexes i , j , k , l . Then the reduced flow does not
allow a Chaplygin multiplier.



Integrability of a symmetric case
Note that in the case of SO(n)–symmetry, when the mass tensor I
(i.e., the matrix J) is proportional to the identity matrix, the
(0, 3)-tensor Σ vanishes and the trajectories are great circles for all
ε.

Theorem
For the symmetric inertia operator I (ω) = Iω + ωI ,
I = diag(I1, . . . , In),

I1 = I2 = · · · = Ir 6= Ir+1 = Ir+2 = · · · = In

the reduced system (7), (8) is solvable by quadratures and we have:
(i) If r 6= 1, n − 1, generic motions are quasi-periodic over
3–dimensional invariant tori that are level sets of integrals H, φij ,
φkl , 1 ≤ j < i ≤ r , r < l < k ≤ n.
(ii) If r = n − 1, generic motions are quasi-periodic over
2–dimensional invariant tori that are level sets of H, φij ,
1 ≤ j < i ≤ n − 1 (similarly for r = 1).
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