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Introduction

The Standard Model of particle physics has been proved
remarkably successful in interpreting experimental results.
However, it is considered as an effective theory as it leaves a
number of unanswered questions including: charge
quantization, neutrino masses, dark matter, hierarchy problem,
gravity.

Supersymmetry is a well studied, compelling Standard Model
extension that could help to resolve some of these issues. The
introduction of SUSY at a few TeV leads also to coupling
unification (with minimal content). However, as of today,
experiments have not provided any evidence in favour of
supersymmetry.
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Standard Model Coupling Evolution

Running couplings in Standard Model (SM) and Minimal
Supersymmetric Standard Model (MSSM) using two-loop
renormalisation group evolution (Particle Data Group).
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String Theory

String theory is our best candidate for a consistent theory of
quantum gravity that can incorporate gauge interactions
including the Standard Model of Particle Physics.

String phenomenology focuses on the construction and study
of phenomenological features of string derived gauge models.
These include extensions of the SM or GUTs that comprise the
SM. The research in this field has yielded low energy effective
models with realistic characteristics. These include the
SU(3)× SU(3)× SU(3), SU(5)× U(1), Pati-Salam models. All
these models exhibit N = 1 space-time supersymmetry.
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Non-supersymmetric strings

Space-time supersymmetry is not required for consistency in
string theory.

From the early days of the first string revolution it was known
that heterotic strings in 10D comprise both the supersymmetric
E8 × E8 and SO(32) models and the non-supersymmetric
tachyon free SO(16)× SO(16) theory.

However, non-supersymmetric string phenomenology has not
received much attention until recently∗.

∗ ∗ see e.g. S. Abel, K. R. Dienes and E. Mavroudi (2015,2017) , J. R. and I. Florakis
(2016,2017) , Y. Sugawara, T. Wada (2016) , A. Lukas, Z. Lalak and E. E. Svanes (2015)
, S.G. Nibbelink, O. Loukas, A. Mütter, E. Parr, P. K. S. Vaudrevange (2017), Faraggi
et all (2020) , T. Coudarchet, E. Dudas, H. Partouche (2021) , R. Perez-Martinez,
S. Ramos-Sanchez and P. K. S. Vaudrevange (2021) 5



Non-supersymmetric strings

Any scenario of supersymmetry breaking in the context of
string theory has to address some important issues, as

• Resolve MW/MP hierarchy
• Compatibility with gauge coupling evolution (“unification”)
• Account for the smallness of the cosmological constant
• Resolve possible instabilities (tachyons)
• Moduli field stabilisation

An elegant realisation of SUSY breaking in the context of string
theory is provided by the Scherk–Schwartz mechanism.
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Coordinate dependent compactifications

The Scherk–Schwartz compactification provides an elegant
mechanism to break SUSY in the context of String Theory. A
(minimal) implementation of a stringy Scherk–Schwartz
mechanism requires an extra dimension X5 and a conserved
charge Q. Upon compactification

Φ
(
X5 + 2πR

)
= eiQΦ

(
X5
)

we obtain a shifted tower of Kaluza–Klein
states for charged fields, starting at
MKK = |Q|

2πR

Φ(X5) = e
i QX5
2πR

∑
n∈Z

Φn ei nX
5/R
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Coordinate dependent compactifications

Q = Fermion number⇒ leads to different masses for
fermions-bosons (lying in the same supermultiplet) and thus
to spontaneous breaking of supersymmetry.

SUSY breaking related to the compactification radius M ∼ 1
R

see e.g.
J. Scherk and J. H. Schwarz (1978,1979) , R. Rohm (1984) , C. Kounnas and M. Porrati
(1988) , S. Ferrara, C. Kounnas, M. Porrati and F. Zwirner (1989) , C. Kounnas and
B. Rostand (1990) , C. Kounnas, H. Partouche (2017)
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Gravitino mass

We consider compactifications of the six internal dimensions
in three separate two-tori parametrised by the
T(i),U(i), i = 1, 2, 3 moduli. For simplicity, we will assume that
the Scherk–Schwartz mechanism is realised utilising the
T(1),U(1) torus.
At tree level the gravitino receives a
mass

m3/2 =
|U(1)|√
T(1)2 U(1)

2

=
1
R1

for a square torus: T = ıR1 R2,U = ıR2/R1
All T(i),U(i) moduli remain massless.

At R1 → ∞ we have m3/2 = 0 and the supersymmetry is
restored. 9



One loop partition function

Z =
1

η2η̄2
1
24

∑
h1,h2,H,H′

g1,g2,G,G′

1
23

∑
a,k,ρ
b,ℓ,σ

1
23

∑
H1,H2,H3
G1,G2,G3

(−1)a+b+HG+H
′G′+Φ

×
ϑ[ab]

η

ϑ[a+h1b+g1 ]

η

ϑ[a+h2b+g2 ]

η

ϑ[a−h1−h2b−g1−g2 ]

η

× ϑ̄[kℓ]
3

η̄3
ϑ̄[k+H

′

ℓ+G′ ]

η̄

ϑ̄[k−H
′

ℓ−G′ ]

η̄

ϑ̄[k+h1ℓ+g1 ]

η̄

ϑ̄[k+h2ℓ+g2 ]

η̄

ϑ̄[k−h1−h2ℓ−g1−g2 ]

η̄

×
ϑ̄[ρ+H

′

σ+G′ ]

η̄

ϑ̄[ρ−H
′

σ−G′ ]

η̄

ϑ̄[ρσ]
2

η̄2
ϑ̄[ρ+Hσ+G]

4

η̄4

×
Γ
(1)
2,2[

H1
G1 |

h1
g1 ](T(1),U(1))

η2η̄2
Γ
(2)
2,2[

H2
G2 |

h2
g2 ](T(2),U(2))

η2η̄2
Γ
(3)
2,2[

H3
G3 |

h1+h2
g1+g2 ](T

(3),U(3))

η2η̄2
,

where T(i) = T(i)1 + iT(i)2 , U(i) = U(i)
1 + iU(i)

2 are the moduli of the three
two tori, η(τ) is the Dedekind eta function and ϑ[αβ ](τ) stand for the
Jacobi theta functions. 10



Twisted/shifted lattices

The Scherk–Schwarz breaking is implemented utilising orbifold
shifts parametrised by Gi,Hi, i = 1, 2, 3

Γ2,2[
Hi
Gi |

h
g](T,U) =


∣∣ 2η3
ϑ[1−h
1−g]

∣∣2 , (Hi,Gi) = (0, 0) or (Hi,Gi) = (h,g)

Γshift
2,2 [

Hi
Gi ](T,U) , h = g = 0

0 , otherwise

,

Γshift
2,2 [

Hi
Gi ](T,U) =

∑
m1,m2
n1,n2

(−1)Gi(m1+n2) q
1
4 |PL|

2 q̄
1
4 |PR|

2
,

with

PL =
m2 +

Hi
2 − Um1 + T(n1 + Hi

2 + Un2)√
T2U2

,

PR =
m2 +

Hi
2 − Um1 + T̄(n1 + Hi

2 + Un2)√
T2U2

.
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One loop potential

The effective potential at one loop, as a function moduli
tI = T(i),U(i), is obtained by integrating the string partition
function Z(τ1, τ2; tI) over the worldsheet torus Σ1

Vone−loop(tI) = − 1
2(2π)4

∫
F

d2τ
τ 32

Z(τ, τ̄ ; tI) ,

where F is the fundamental domain .

For given values of the moduli

Z =
∑
n∈Z/2
n≥−1/2

∑
m∈Z

Zn,m qnr qmi =
∑
n∈Z/2
n≥−1/2

 [n]+2∑
m=−[n]−1

Zn,m qmi

 qnr .

where qr = e−2πτ2 and qi = e2πiτ1
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One loop potential: Large volume limit

The asymptotic behaviour of the one loop potential is

lim
T2≫1

Vone-loop(T,U) = −(nB − nF)
24π7T22

∑
m1,m2∈Z

U32∣∣m1 +
1
2 + Um2

∣∣6 +O
(
e−

√
2πT2

)

lim
T2≫1

Vone-loop(T,U) = ξ
(nB − nF)

T22
+ exponentially supressed

where ξ is a constant and nB,nF stand for the number of
massless bosonic and fermionic degrees of freedom
respectively, and T2 = R2 for a square torus.

Cosmological constant is exponentially small for large R for
models with fermion-boson degeneracy nB = nF
(super-no-scale models).
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The non-supersymmetric Pati-Salam model

Based on “Lepton Number as the Fourth Color”, J. C. Pati and A.
Salam (1974)

Gauge symmetry : SU(4)×SU(2)L×SU(2)R
SM Fermions:

FL(4, 2, 1) = Q(3, 2,−1/6) + L(1, 2, 1/2) ,
FR(4, 1, 2) = uc(3, 1, 2/3) + dc(3, 1,−1/3) + ec(1, 1,−1) + νc(1, 1, 0)

Extra triplets: (6, 1, 1)
Pati-Salam Higgs scalars: H (4, 1, 2)
SM Higgs scalars:

h (1, 2, 2) = Hu
(
1, 2,+ 12

)
+ Hd

(
1, 2,− 12

)
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Pati–Salam string models

Our starting point is the free fermionic formulation of the
heterotic string. In this context all world-sheet bosonic
coordinates are fermionised (except the ones associated with
4D space-time).
In the standard notation the fermionic coordinates in the
light-cone gauge are:

left: ψµ, χ1,...,6, y1,...,6, ω1,...,6

right: ȳ1,...,6, ω̄1,...,6, η̄1,2,3, ψ̄1,...,5, ϕ̄1,...,8

In this framework a model is defined by a set of basis vectors
which encode the parallel transport properties of the
fermionic fields along the non-contractible loops of the
world-sheet torus, and a set of phases associated with
generalised GSO projections (GGSO).
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Pati–Salam string models

A class of Pati-Salam models can be generated by the basis
β1 = 1 = {ψµ, χ1,...,6, y1,...,6, ω1,...,6|ȳ1,...,6, ω̄1,...,6, η̄1,2,3, ψ̄1,...,5, ϕ̄1,...,8} ,
β2 = S = {ψµ, χ1,...,6} ,
β3 = T1 = {y12, ω12|ȳ12, ω̄12} ,
β4 = T2 = {y34, ω34|ȳ34, ω̄34}
β5 = T3 = {y56, ω56|ȳ56, ω̄56} ,
β6 = b1 = {χ34, χ56, y34, y56|ȳ34, ȳ56, ψ̄1,...,5, η̄1} ,
β7 = b2 = {χ12, χ56, y12, y56|ȳ12, ȳ56, ψ̄1,...,5, η̄2} ,
β8 = z1 = {ϕ̄1,...,4} , β9 = z2 = {ϕ̄5,...,8} , β10 = α = {ψ̄4,5, ϕ̄1,2} ,
and a set of 10(10− 1)/2+ 1 = 46 GGSO phases c

[
βi
βj

]
= ±1.

This class compises 246 ≈ 7× 1013 models.
Gauge group:

G = {SU(4)× SU(2)L × SU(2)R}observable × U(1)3 × SU(2)4 × SO(8)
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Phenomenological criteria

(a) Absence of physical tachyons in the string spectrum
(b) Existence of complete chiral fermion generations
(c) Existence of Pati–Salam and SM symmetry breaking scalar
Higgs fields
(d) Absence of observable gauge group enhancements
(e) Vector-like fractionally charged exotic states
(f) Consistency with the Scherk–Schwarz SUSY breaking
(g) Compliance with the super-no-scale condition, that is
translated to equality of the fermionic and bosonic degrees of
freedom
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Phenomenologically promising Pati–Salam string models

A comprehensive computer scan over the full parameter space
( 1.7× 1010 models) yields
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Light shaded bars: (a)-(c) 2.4× 108 models, Medium shaded bars
(a)-(g) 5.6× 105 models, Dark shading bars: 1.4× 104 models 18



One-loop potentials

1 2 3 4 5 6 7 T2

10

20

30

40

V

(T2)

A1: 1536 models

1 2 3 4 5 6 7 T2
5
10
15
20
25
30
35

V

(T2)

A2: 1536 models

1 2 3 4 5 6 7 T2
2
4
6
8
10

V

(T2)

B1: 8448 models

1 2 3 4 5 6 7 T2

2

4

6

8

V

(T2)

B2: 1792 models

1 2 3 4 5 6 7 T2

-6

-4

-2

2

V

(T2)

C1: 75264 models

1 2 3 4 5 6 7 T2

-12
-10
-8
-6
-4
-2
0
2

V

(T2)

C2: 71936 models

1 2 3 4 5 6 7 T2

-14
-12
-10
-8
-6
-4
-2
0

V

(T2)

C3: 6272 models

1 2 3 4 5 6 7 T2

-15

-10

-5

0

V

(T2)

C4: 3840 models

1 2 3 4 5 6 7 T2

-20

-15

-10

-5

0

V

(T2)

C5: 68096 models

1 2 3 4 5 6 7 T2

-25

-20

-15

-10

-5

0

V

(T2)

C6: 3584 models

1 2 3 4 5 6 7 T2

-30
-25
-20
-15
-10
-5
0

V

(T2)

C7: 8448 models

1 2 3 4 5 6 7 T2

-30
-25
-20
-15
-10
-5
0

V

(T2)

C8: 28032 models

1 2 3 4 5 6 7 T2

-30
-25
-20
-15
-10
-5
0

V

(T2)

C9: 6144 models

1 2 3 4 5 6 7 T2

-40

-30

-20

-10

0

V

(T2)

C10: 1536 models

1 2 3 4 5 6 7 T2

-4

-3

-2

-1

V

(T2)

D1: 3072 models

1 2 3 4 5 6 7 T2

-6
-5
-4
-3
-2
-1

V

(T2)

D2: 12288 models

1 2 3 4 5 6 7 T2

-8

-6

-4

-2

V

(T2)

D3: 123136 models

1 2 3 4 5 6 7 T2

-50

-40

-30

-20

-10

0

V

(T2)

D4: 24000 models

1 2 3 4 5 6 7 T2

-50

-40

-30

-20

-10

0

V

(T2)

D5: 1152 models

1 2 3 4 5 6 7 T2

-50

-40

-30

-20

-10

0

V

(T2)

D6: 1920 models

1 2 3 4 5 6 7 T2

-50
-40
-30
-20
-10
0

V

(T2)

D7: 1792 models

1 2 3 4 5 6 7 T2

-60
-50
-40
-30
-20
-10
0

V

(T2)

D8: 62464 models

1 2 3 4 5 6 7 T2

-60
-50
-40
-30
-20
-10
0

V

(T2)

D9: 41344 models

1 2 3 4 5 6 7 T2

-80

-60

-40

-20

0

V

(T2)

D10: 6272 models

1 2 3 4 5 6 7 T2

-100
-80
-60
-40
-20

V

(T2)

D11: 384 models

1 2 3 4 5 6 7 T2

-150

-100

-50

V

(T2)

D12: 320 models

Figure 1: The rescaled effective potential Ṽ(T2) = 2(2π)4V(T2) for each
of the 26 distinct subclasses of models. The number of models in
each class is also displayed.
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One-loop potentials

Typical class B model potential
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Conclusions

We have shown the existence of non-supersymmetric
Pati-Salam string models with the following interesting
properties

• Spectra with realistic characteristics (Fermion chirality, PS
and SM Higgs scalars)

• SUSY breaking via the Scherk–Schwarz mechanism at
scales Msusy ∼ 1

R ≪ MPlanck
• Fermion-boson degeneracy (super-no-scale condition)
that leads to exponentially small cosmological constant at
the large volume limit

• Examine more realistic configurations employing real
fermions ... etc
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