Thermodynamics and Complexity of Holographic Backgrounds

Tsvetan Vetsov

Department of Physics, Sofia University, Bulgaria

SEENET-MTP WORKSHOP BEYOND THE STANDARD MODEL(S) BW2021

7 - 10 September 2021, Belgrade, Serbia

Outline

- Black Hole Thermodynamics
- Extended Thermodynamic Framework
- Thermodynamic Information Geometry
- Complexity of Black Holes
- Applications to 3d Holographic Models

First Law of Black Hole Thermodynamics

- Thermodynamic potential: E or M.
- Extensive parameters: $E^a = (S, J, Q, ...).$
- Intensive parameters: $I^a = (T, \Omega, \Phi, ...).$
- The first law (balance of energy):

$$dM = TdS + \Omega dJ + \Phi dQ + \dots = \delta_{ab} I^a dE^b.$$
(1)

• Condition for thermodynamic equilibrium:

$$\frac{\partial M}{\partial E^a} = \delta_{ab} I^b. \tag{2}$$

Asymptotically Flat Spacetimes

Killing symmetries:

$$\xi = \xi_{(t)} + \Omega \xi_{(\phi)}. \tag{3}$$

Komar integrals:

$$M = -\frac{D-2}{16\pi(D-3)} \int_{S_{\infty}} *d\xi_{(t)}, \quad J = \frac{1}{16\pi} \int_{S_{\infty}} *d\xi_{(\phi)}.$$
 (4)

The Hawking temperature on the horizon:

$$T = \frac{\kappa}{2\pi} = \frac{1}{2\pi} \sqrt{-\frac{1}{2} (\nabla_{\mu} \xi_{\nu}) (\nabla^{\mu} \xi^{\nu})} \Big|_{H}.$$
 (5)

Rigidity theorem on the horizon:

$$\xi_{\mu}\xi^{\mu}\big|_{H} = 0 \quad \Rightarrow \quad \Omega = const. \tag{6}$$

Wald's Entropy

Wald '93:

$$S = -2\pi \int_{H} \sqrt{|h|} \frac{\delta \mathcal{L}}{\delta R_{\mu\nu\rho\sigma}} \epsilon_{\mu\nu} \epsilon_{\rho\sigma} d^{d-1} x.$$
 (7)

Includes higher derivative theories:

$$\frac{\delta \mathcal{L}}{\delta R_{\mu\nu\rho\sigma}} = \frac{\partial \mathcal{L}}{\partial R_{\mu\nu\rho\sigma}} - \nabla_{\zeta_1} \left(\frac{\partial \mathcal{L}}{\partial \nabla_{\zeta^1} R_{\mu\nu\rho\sigma}} \right) + \cdots + (-1)^n \nabla_{\zeta_1} \dots \nabla_{\zeta_n} \left(\frac{\partial \mathcal{L}}{\partial \nabla_{(\zeta_1} \dots \nabla_{\zeta_n)} R_{\mu\nu\rho\sigma}} \right).$$
(8)

The antisymmetric normal bivector to the surface H:

$$\nabla_{\mu}\xi_{\nu} = \kappa\epsilon_{\mu\nu}, \quad \epsilon_{\mu\nu} = -\epsilon_{\nu\mu}, \quad \epsilon_{\mu\nu}\epsilon^{\mu\nu} = -2.$$
(9)

Extended Thermodynamic Framework

Consider Λ as an effective parameter. One can show that it behaves like a pressure (Kastor, Ray & Traschen '09):

$$P = -\frac{D-2}{16\pi}\Lambda.$$
 (10)

The first law is modified:

$$dM = TdS + \Omega dJ + \Phi dQ + VdP.$$
(11)

Thermodynamic volume:

$$V = -\int *\omega, \quad d*d\xi + 2\Lambda d*\omega, \quad \xi = *d*\omega.$$
(12)

Komar integrals:

$$M = -\frac{D-2}{16\pi(D-3)} \int_{S_{\infty}} (*d\xi_{(t)} + 2\Lambda * \omega), \quad J = \frac{1}{16\pi} \int_{S_{\infty}} *d\xi_{(\phi)}.$$
 (13)

Thermodynamic Information Geometry How to define a proper distance between equilibrium macrostates in the phase space $\mathcal{E} = \{\Xi, E^a\}$?

Fluctuation theory (Ruppeiner '79):

$$S(E^{a}) = S_{0} + EQL + \frac{\partial^{2}S}{\partial E^{a}\partial E^{b}}dE^{a}dE^{b} + \cdots$$

Ruppeiner information metric:

$$g_{ab}^{(R)} = -\frac{\partial^2 S}{\partial E^a \partial E^b} = -\text{Hess}S(\vec{E}).$$
 (14)

Weinhold information metric (Weinhold '75):

$$g_{ab}^{(W)} = \frac{\partial^2 M}{\partial E^a \partial E^b} = \text{Hess}M(\vec{E}).$$
 (15)

Legendre invariant metrics (H. Quevedo '17):

$$ds^{2} = \left(\delta_{ac}\xi^{cb}E^{a}\frac{\partial\Xi}{\partial E^{b}}\right)\left(\eta^{d}_{e}\frac{\partial^{2}\Xi}{\partial E^{d}\partial E^{f}}dE^{e}dE^{f}\right)$$
(16)

New thermodynamic geometry (Mansoori & Mirza '19):

$$\hat{g} = \text{blockdiag}\left(\frac{1}{T}\frac{\partial^2 M}{\partial S^2}, -\hat{G}\right),$$
(17)

$$G_{ij} = \frac{1}{T} \frac{\partial^2 M}{\partial Y^i \partial Y^j}, \quad Y^i = (Q_1, \dots, Q_m).$$
(18)

Complexity

Computational complexity is a measure of how hard is to implement a given task:

- The computational complexity of an algorithm is the amount of resources required to run it.
- The complexity of a quantum state is the minimal number of simple unitary operations required to prepare it from another reference state.
- To date there is no well-posed definition for the complexity for quantum field theory states.

Complexity in Holography

- Several proposals for the dual of quantum complexity: complexity equals volume" (CV) and "complexity equals action" (CA) and others.
- According to CV the complexity of the CFT state is holographically dual to the growth of the size of the black hole.
- According to the CA the quantum complexity of ground state of CFT is given by the classical gravitational action evaluated on the "Wheeler-DeWitt patch" (WDW).
- The Lloyd bound on the growth rate of complexity:

$$\dot{C} \le (F + TS)_{+} - (F + TS)_{+}.$$
 (19)

Thermodynamic Geometry and 3d Holographic Models

• Thermodynamic information geometry for 3d WAdS₃ black hole solution in TMG dual to WCFT₂ with left and right central charges \rightarrow critical temperature (Dimov, Rashkov & Vetsov '19):

$$T_c = \frac{1}{\pi (c_L + \sqrt{c_L c_R})}.$$
 (20)

② Thermodynamic information geometry for 3d SLifBH₃ black hole solution in NMG dual to an unknown CFT₂ → quantum covariance matrix (Kolev, Staykov & Vetsov '19):

$$\mathcal{G}_{ij} = \frac{\partial^2 \psi}{\partial \lambda^i \partial \lambda^j} = \langle (X_i - \langle X_i \rangle) (X_j - \langle X_j \rangle) \rangle.$$
 (21)

Complexity and 3d Holographic Models

 Complexity growth rate for 3d WAdS₃ black hole solution in TMG dual to WCFT₂ with left and right central charges → non-trivial bound on the mass (Dimov, Rashkov & Vetsov '19):

$$M \ge \frac{(2c_L - c_R)\sqrt{c_L}}{3\sqrt{12c_R - 15c_L}}.$$
(22)

Complexity growth rate for 3d rotating BTZ-EGB black hole solution with Gauss-Bonnet coupling α lead to the determinantion of the closest distance ε to the curvature singularity (Dimov, Iliev, Radomirov, Rashkov & Vetsov '21 upcoming):

$$\epsilon \ge f(\alpha). \tag{23}$$

Thank You!

• In collaboration with:

Prof. DSc Radoslav Rashkov, Prof. Hristo Dimov, Dr. Miroslav Radomirov, Dr. Ivo Iliev.

• Supported by – The Bulgarian NSF Grant N28/5.

Basic Literature

• Black Hole Thermodynamics

□ Jacob D. Bekenstein, Black holes and the second law, Lett. Nuovo Cim. 4 (1972).
 □ Jacob D. Bekenstein, Black Holes and Entropy, Phys. Rev. D 7 (1973) 2333-2346.
 □ J. M. Bardeen, B. Carter and S. W. Hawking, The four laws of black hole mechanics, Commun. Math. Phys. 31 (1973) 161.

 \square Davies P. C. W., The thermodynamic theory of black holes, Proc. R. Soc. Lond. A353499–521, 1977.

• Extended Thermodynamic Framework

 \Box Kastor D, Ray S, Traschen J., Enthalpy and the Mechanics of AdS Black Holes, Class. Quan. Grav. (2009) 26:195011.

Cvetic M, Gibbons G, Kubiznak D, Pope C., Black Hole Enthalpy and an Entropy Inequality for the Thermodynamic Volume, Phys. Rev. D (2011) 84:024037.

 \square Dolan B. P. The Cosmological Constant and Black-Hole Thermodynamic Potentials, Class. Quan. Grav. (2011) 28:125020.

• Thermodynamic Information Geometry

 \square F. Weinhold, Metric geometry of equilibrium thermodynamics, J. Chem. Phys. 63 no. 6, (1975) 2479–2483.

 \square G. Ruppeiner, Riemannian geometry in thermodynamic fluctuation theory, Rev. Mod. Phys. 67 (1995) 605–659.

 \Box H. Quevedo, M. N. Quevedo, and A. Sanchez, Homogeneity and thermodynamic identities in geometrothermodynamics, Eur. Phys. J. C77 no. 3, (2017) 158.

 \Box S. A. H. Mansoori, B. Mirza, and M. Fazel, Hessian matrix, specific heats, Nambu brackets, and thermodynamic geometry, JHEP 04 (2015) 115.

Basic Literature

• Complexity of Black Holes

□ Douglas Stanford and Leonard Susskind, Complexity and shock wave geometries, Phys. Rev. D 90, 126007, 2014.

 □ Adam R. Brown, Daniel A. Roberts, Leonard Susskind, Brian Swingle, and Ying Zhao, Holographic Complexity Equals Bulk Action?, Phys. Rev. Lett. 116, 191301, 2016.
 □ Adam R. Brown, Daniel A. Roberts, Leonard Susskind, Brian Swingle, and Ying Zhao, Complexity, action, and black holes, Phys. Rev. D 93, 086006, 2016.

• Applications to 3d Holographic Models

□ H. Dimov, R. C. Rashkov and T. Vetsov, Thermodynamic information geometry and complexity growth of a warped AdS black hole and the warped AdS₃/CFT₂ correspondence, Phys. Rev. D 99 (2019) no.12, 126007.
 □ H. Dimov, I. Iliev, M. Radomirov, R. C. Rashkov and T. Vetsov, Thermodynamic Information Geometry of the Rotating Gauss-Bonnet BTZ Black Hole, (upcoming).
 □ H. Dimov, I. Iliev, M. Radomirov, R. C. Rashkov and T. Vetsov, Complexity Growth Rate of the Rotating Gauss-Bonnet BTZ Black Hole, (upcoming).

